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We consider the lattice Boltzmann method for immiscible multiphase flow simulations.
Classical lattice Boltzmann methods for this problem, e.g. the colour gradient method or
the free energy approach, can only be applied when density and viscosity ratios are small.
Moreover, they use additional fields defined on the whole domain to describe the different
phases and model phase separation by special interactions at each node. In contrast, our
approach simulates the flow using a single field and separates the fluid phases by a free
moving interface. The scheme is based on the lattice Boltzmann method and uses the level
set method to compute the evolution of the interface. To couple the fluid phases, we
develop new boundary conditions which realise the macroscopic jump conditions at the
interface and incorporate surface tension in the lattice Boltzmann framework. Various sim-
ulations are presented to validate the numerical scheme, e.g. two-phase channel flows, the
Young–Laplace law for a bubble and viscous fingering in a Hele-Shaw cell. The results show
that the method is feasible over a wide range of density and viscosity differences.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

The study of immiscible two-phase flows is an important model problem for free surface flows. Free surface flows with
multiple fluid phases appear in a wide range of situations in many areas of applications and industrial processes. For exam-
ple, bubble dynamics is crucial for the design of chemical reactors and devices for transferring mass or heat between liquid–
liquid or gas–liquid mixtures; fingering is important in oil recovery when pressurised water is used to extract viscous crude
oil from porous rock deposits; the formation and break-up of liquid–metal jets represents a main feature in metal forming
processes; droplet oscillations can be used to measure physical material properties and interfacial dynamics of liquids and
gases. Owing to the practical importance of these problems, a large body of literature has been accumulated over the years.
We mention [35,30] for an overview of this research field.
. All rights reserved.
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During the last two decades, the lattice Boltzmann method (LBM) has been developed as an alternative numerical scheme
for solving the incompressible Navier–Stokes equations. Historically, it originated from lattice gas cellular automata, which
simulate the dynamics of fluid particles on a microscopic level based on the Boltzmann equation in a discrete phase space
using only a small number of velocities adapted to a regular grid in space. While lattice gas automata deal with individual
particles, particle densities (also occupation numbers or particle distributions) are the objects in the LBM model. Together
with a number of simplifications this statistical, mesoscopic picture has been a major improvement of LBM which contrib-
uted to its competitiveness as a numerical solver. The main advantages attributed to LBM are the ease of implementation
(since the nonlinear Navier–Stokes equations are replaced by the semi-linear Boltzmann equation), the simplicity in simu-
lating domains with complex geometry (in particular porous media), and the ease of parallelisation (since only local oper-
ations are performed). Chen and Doolen [8], and Succi [39] give a concise and comprehensive summary of the LBM approach,
its applications, and the various ramifications and extensions the basic method has undergone over the years.

Numerous combinations of conventional fluid solvers based on finite difference, finite volume or finite element discret-
isations with numerical methods for free surfaces have been described to simulate multiphase flows. In the LBM framework,
most approaches for immiscible multiphase flows are based on the colour gradient method [13], the method of Shan and
Chen [33] or the free energy approach [37], and integrate the representation and evolution of the interface in the LBM algo-
rithm. Recently, a hybrid method combining LBM and the front-tracking method has also been proposed [22].

The most simple and wide-spread among these approaches is the colour gradient method of Gunstensen and Rothman
[14,15,29]. It contains two sets of LBM populations, one for each phase, and models phase separation and interface tension
using a recolouring step. In each node, the algorithm attempts to separate the two phases as much as possible by redistrib-
uting the two sets of populations. Interfaces are implicitly defined by the fluid fraction iso-surface where the content of the
two fluids is equal. In general the method is applicable only for small density and viscosity differences and in particular the
recolouring step causes grid-dependent artifacts at the interface [21]. A different approach was presented by Shan and Chen
[33,34], who introduced the concept of interaction potentials. The method in principle models miscible fluids, and immiscible
flows can only approximately be described. Swift et al. developed a LBM modification using the free energy approach [37,38].
They rely on a second set of populations which describes the fluid fraction and is determined by the free energy of the sys-
tem. In this case, the lattice Boltzmann approach gives rise to a stress tensor in the Navier–Stokes equations that differs from
the classical definition based on transmission conditions at the phase boundary which we use here.

A variety of methods is used for computing free surface motion in areas ranging from mechanical engineering, chemistry
and medicine to computer science (see e.g. [26]). These methods are commonly divided into two classes: interface tracking
and interface capturing. The former describes surface evolution by tracking individual marker particles moving according to
a given velocity field. It can be further subdivided in surface tracking methods, where the set of points constitutes the surface
[42], and volume tracking methods, where particles are distributed in space and the surface is reconstructed from the bound-
ary of the point cloud, e.g. in the classical marker-and-cell method [10]. In contrast, the latter class is based on the viewpoint
of a marker field and uses a function on a numerical grid that obeys a transport equation with a prescribed advection veloc-
ity. In this class, methods of discontinuous type define the surface as the discontinuity set of the field, and methods of con-
tinuous type define the surface as a contour surface (or contour line in 2D) of the field.

We apply the continuous interface capturing approach of the level set method, which uses the signed distance to the sur-
face as a marker function in the domain under consideration [31,24]. The evolution of this function over time is governed by
a PDE of Hamilton–Jacobi type that is solved numerically by appropriate schemes for hyperbolic equations. The surface is
recovered implicitly from the zero level set of the real-valued signed distance function. In the level set framework, topology
changes are handled in a natural way. This is an interesting feature when simulating bubble dynamics, where coalescence
and break-up of bubbles can be observed in experiments. Furthermore, the level set method can be implemented very effi-
ciently using the narrow-band technique, which stores the distance function only in a small part of the grid around the sur-
face [1]. Other techniques, e.g. the fast marching method for (re)initialisation, further contribute to its computational
performance [2].

In the present paper, we develop a hybrid lattice Boltzmann level set method, i.e. an interface capturing method com-
bined with LBM, where boundaries between different fluid phases are represented by sharp interfaces separating the fluids
to address the difficulties experienced with the classical LBM approaches. Coupling the level set method with LBM has sev-
eral advantages. Firstly, the level set method works on a regular, cubic lattice as LBM does, such that numerical quantities
can be represented on the same grid thus avoiding errors when transferring data from one grid to the other. Secondly, it com-
bines high accuracy with efficient numerical algorithms and low memory requirements to provide the surface data, e.g. nor-
mals and curvatures. Interface evolution is handled independently by the level set method, where the level set function
moves according to the flow field of the lattice Boltzmann model. This allows to control fluid flow and interface separately
and avoids several drawbacks of previous LB methods for multiphase flows. In particular, the colour gradient method is only
applicable when density differences are small and it exhibits grid-dependent perturbations of the interface which cannot be
removed in the LBM framework [21]. The method of Chen and Shan suffers, among other things, from mass losses. Mass loss
is also an issue in the level set method, but various strategies have been presented in the literature to address this numerical
artifact [24,40,36].

To connect the two separate fluid phases in the LBM, we develop a new boundary condition for the populations at the
interface. The scheme can be implemented in a similar way as the well-known bounce back boundary conditions at walls.
This is achieved by analysing the continuity or jump conditions for the macroscopic quantities velocity, pressure and stress
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on the kinetic level. In this way surface tension is correctly modelled in the LBM. Moreover, it allows us to simulate flows
with large density and viscosity differences, a major goal of our work.

Another hybrid method combining LBM with standard numerical methods for surface computations in [22] presented a
lattice Boltzmann front-tracking method which incorporates interface tension via curvature-dependent volume forces along
the surface. The method significantly reduces the interface smearing effect of the traditional LBM approaches mentioned
above. It successfully simulated the Young–Laplace law and capillary waves with equal viscosity and density. However,
our new approach is also able to simulate flow in with high density and viscosity differences. Moreover, the level set method
is well suited for topology changes while this is not easily accomplished using particle methods like front-tracking.

The rest of the paper is organised as follows: in section 2 the general setup of the two-phase flow problem is described.
Section 3 contains the lattice Boltzmann method and section 4 explains the level set method. In section 5 a new approach for
the treatment of the fluid interface within the lattice Boltzmann method is presented. At the interface, suitable LBM bound-
ary conditions have to be prescribed which implement the jump conditions. Moreover, the interface movement requires a
reinitialisation of the populations in nodes changing their fluid phase. We also describe how the level set algorithm is cou-
pled with the lattice Boltzmann method. Finally, Section 6 contains a numerical investigation of the approach and a compar-
ison with several benchmark examples. We present channel flow simulations with two immiscible fluid layers and compare
with the analytical solutions. The Young–Laplace experiment for the pressure difference inside a bubble is used as a bench-
mark problem to validate the surface tension of the new scheme. Finally, we investigate viscous fingering experiments in a
Hele-Shaw cell. The results show that the new scheme can successfully simulate multiphase flows with complex geometrical
features and large viscosity and density differences.

2. The two-phase flow problem

We use the Navier–Stokes equations for two incompressible fluids as a mathematical model for immiscible two-phase
flow problems with free surfaces. The equations governing the flow in each phase are presented and the jump conditions
coupling the phases at interfaces are discussed in this section.

The flow domain is a bounded, open set X in three-dimensional space partitioned into three subsets: X1 and X2 are open
subdomains of fluid 1 and 2, respectively, and C ¼ @X1 \ @X2 is the interface (Fig. 1). It is assumed to be a sharp interface
where material properties are discontinuous and no mixing in surface layers occurs. Throughout each subdomain material
properties are constant. The subdomains and the free surface evolve over time according to the velocity of the flow in X.

The evolution of the flow fields is governed by the incompressible Navier–Stokes equations separately in each subdomain
Xi:
r � uðiÞ ¼ 0; in Xi; ð1aÞ

@tuðiÞ þ ðuðiÞ � rÞuðiÞ ¼ �
1
.ðiÞ
rpðiÞ þ mðiÞDuðiÞ þ FðiÞ; in Xi; ð1bÞ
with compatible boundary and initial conditions, for example
uðiÞðx; tÞ ¼ 0; on @Xi n C; ð1cÞ

uðiÞðx;0Þ ¼ uðiÞiniðxÞ; in Xi: ð1dÞ
Here, uðiÞ is the velocity, pðiÞ the pressure, mðiÞ the kinematic viscosity, .ðiÞ the mass density and FðiÞ an exterior force density per
unit mass in subdomain Xi.

The system is not completely defined without boundary conditions at the interface C. In the presence of viscosity we as-
sume continuity of the velocities; furthermore surface tension balances the jump in normal stresses. Formally this is ex-
pressed by the following jump conditions:
½u� ¼ 0; ½T�n ¼ 2rjn; ð2Þ
  Ω

Ω

Γ

2

1

c

x1

i

x2

Fig. 1. Left: two-phase partitioning of the domain. Right: link crossing the interface from fluid 1 to fluid 2.
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where T ðiÞ ¼ �pðiÞI þ 2lðiÞSðiÞ is the stress tensor with SðiÞkl ¼ 1
2 @kuðiÞl þ @ lu

ðiÞ
k

� �
, lðiÞ ¼ .ðiÞmðiÞ, r the surface tension, j ¼ 1

2 ðj1 þ j2Þ
the mean curvature (for principal curvatures j1, j2) with respect to the surface normal n. As usual, brackets denote the jump
of a quantity, q, across the surface: ½q�ðxÞ ¼ lim�!0ðqðxþ �nÞ � qðx� �nÞÞ.

Note that the interface and the domains in the model depend on time. The unknowns of the problem are the velocity
u(x, t), the pressure p(x, t) and the interface Ct . An algorithm for solving two-phase flow problems therefore contains three
ingredients:

1. a solver for the flow equations for u(x, t), p(x, t),
2. a scheme for computing the motion of the interface Ct , and
3. a method for coupling fluid flow and interface evolution.

In the following chapter we describe the lattice Boltzmann method for fluid flows. In Section 4 we present the level set
method for free surface motion and Section 5 addresses the coupling problem by introducing a new LBM boundary condition.

3. The lattice Boltzmann method

We use the lattice Boltzmann method to solve the incompressible Navier–Stokes equations. In this section we give an
overview of the method and the specific model used in our implementation. We describe the collision and propagation steps
and discuss the implementation of boundary conditions.

The lattice Boltzmann method is based on a kinetic picture of fluid flow and approximates the Boltzmann equation
@tf þ v � rf ¼ Jðf Þ þ G ð3Þ
which describes the evolution of the particle density f(x,v, t) in phase space. In Eq. (3), v is the microscopic particle velocity,
J(f) denotes the collision operator and G models external forces. In the LBM algorithm, the equation is discretised with a reg-
ular grid in space and with a restricted number of velocities adapted to this grid [8,17,39,45]. We use the D3Q15 model in 3D,
which has 15 velocity vectors on a cubic grid with unit spacing including one zero velocity. The vectors are given by the col-
umns of the matrix
c ¼
0 1 0 0 1 �1 1 1 �1 0 0 �1 1 �1 �1
0 0 1 0 1 1 �1 1 0 �1 0 �1 �1 1 1
0 0 0 1 1 1 1 �1 0 0 �1 �1 �1 �1 1

2
64

3
75: ð4Þ
The corresponding particle distributions are denoted by fiðx; tÞ ¼ f ðx; ci; tÞ. Density and velocity are recovered from these
populations by taking the moments
qðx; tÞ ¼
X14

i¼0

fiðx; tÞ; u ¼
X14

i¼0

fiðx; tÞci: ð5Þ
For the collision operator we use the well-known Bhatnagar–Gross–Krook (BGK) approximation [3], such that the discretised
evolution equation reads
fiðxþ ci; t þ 1Þ ¼ fiðx; tÞ �
1
s
ðfi � f eq

i Þ þ Gi: ð6Þ
The parameter s is the relaxation parameter for the BGK collision operator and controls the kinematic viscosity m ¼ 1
6 ð2s� 1Þ.

Furthermore, the use of the equilibrium distribution
f eq
i ðf Þ � f eq

i ðq;uÞ ¼ f �i qþ 3ci � uþ
9
2
ðci � uÞ2 �

3
2

u2
� �

ð7Þ
with the corresponding D3Q15 weight factors
f �i ¼

2
9 ; i ¼ 0;
1
9 ; i ¼ 1;2;3;8;9;10;
1

72 ; i ¼ 4;5;6;7;11;12;13;14:

8><
>:
is crucial for obtaining the desired Navier–Stokes equations on the macroscopic level. Using these definitions, the odd order
moments of f eq

i are zero and for the second and fourth order moments we invoke the relations (a, b, c, � = 1, 2, 3)
X
i

f �i ciacib ¼
1
3

dab;
X

i

f �i ciacibcicci� ¼
2
9
ðdabdc� þ dacdb� þ da�dbcÞ;
such that it is easily verified that the equilibrium distribution – and hence also the collision operator – preserves density and
momentum
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X
i

f eq
i ¼ q;

X
i

f eq
i ci ¼ u:
Provided the initialisation and the boundary conditions are sufficiently regular, a formal asymptotic analysis with respect to
the mesh size Dx = h and the time step Dt = h2 shows the relation between the lattice Boltzmann variables and the Navier–
Stokes solution uNS, pNS [18]
fi ¼ f eq
i ð3h2pNS=.;huNSÞ � 3h2sf �i Ki : SNS þ 3h2f �i ci � vOT þ Oðh3Þ: ð8Þ
Here, Ki is defined as
Ki ¼ ci � ci �
1
3
jcij2I;
with the identity matrix I and the tensor product a� b ¼ abT of two column vectors. The product A:B of two square matrices
is A:B = trace(ABT). The additional vector field vOT is a solution of a homogeneous linearised Navier–Stokes equation and van-
ishes if the initial and boundary conditions are suitably constructed.

Computing the moments of the right hand side of Eq. (8), the Navier–Stokes solution ðuNS; pNSÞ is recovered in leading or-
der from
q ¼
X

i

fi ¼ 3h2pNS=.þ Oðh3Þ;

u ¼
X

i

fici ¼ huNS þ h2vOT þ Oðh3Þ
so that pressure can be obtained with first order and velocity with second-order accuracy, provided the field vOT , which de-
pends on the initial and boundary conditions, vanishes
pNS ¼
.

3h2

X
i

fi þ OðhÞ; uNS ¼
1
h

X
i

fici � hvOT þ Oðh2Þ:
In the interior of the domain, LBM alternates the collision step
fþi ¼ fi �
1
s
ðfi � f eq

i Þ þ Gi;
and the propagation step
fiðxþ ci; t þ 1Þ ¼ fþi ðx; t þ 1Þ;
to compute the time evolution of the populations, and solves in this way the incompressible Navier–Stokes equations on the
macroscopic level. At the boundary of the domain, however, this procedure cannot be applied since some populations fþi ðx; tÞ
involved in the propagation step are not defined. More precisely, for boundary points xb ¼ xþ ci and directions ci pointing
inward, the source point x ¼ xb � ci R X lies outside the domain. These populations have to be prescribed in such a way that
the boundary conditions on the macroscopic level are fulfilled: fiðxb; t þ 1Þ ¼ ~f i.

The choice of boundary conditions has an important effect on the accuracy of the numerical solution. For example, the
well-known bounce back scheme for no-slip boundary conditions at a wall is second-order accurate with respect to velocity
only if the wall is midway between two nodes and first order accurate in all other cases. There is no one-to-one relation be-
tween boundary conditions for the Navier–Stokes equations on the macroscopic level and appropriate LBM boundary con-
ditions on the kinetic level. This question has been addressed by many authors who present implementations for different
types of fluid dynamical boundary conditions [19,20,4,16,46].

The widely-used bounce back rule is inspired by a simple particle reflection at a wall to implement no-slip boundary con-
ditions (u = 0): ~f i ¼ fþi� ðxb; tÞ, where i* is the index of the opposite direction ci� ¼ �ci. We use the more sophisticated Bouzidi
boundary condition because it ensures second-order accuracy of the velocity for geometries of arbitrary shape [4]
~f i ¼
2qfþi� ðxb; tÞ þ ð1� 2qÞfþi� ðxb þ ci; tÞ; q < 0;
1

2q fþi� ðxb; tÞ þ 1�2q
2q fþi� ðxb þ ci; tÞ; q P 0:

(
ð9Þ
Here q denotes the normalised distance of the interface from xb along the link ci.
We can also apply pressure boundary conditions at the inlet or outlet of a channel. For a flat inlet in the yz-plane, a pres-

sure p0 in x-direction is imposed by prescribing the density q0 ¼ 3h2p0=. [46]. After defining the ficticious velocity
u0 ¼ q0 � ðf0 þ f2 þ f3 þ f9 þ f10 þ 2ðf5 þ f8 þ f11 þ f13 þ f14ÞÞ, we set
f1 ¼ f8 þ
2
3
q0u0;

fi ¼ fi� þ
1

12
q0u0 �

1
4
ðci2ðf2 � f9Þ þ ci3ðf3 � f10ÞÞ; i ¼ 4;6;7;12:
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At the outlet an analogous procedure can be used. Further suggestions for boundary conditions can be found for example in
[19,20,16] and references therein.

Finally, we can add a vector-valued force per unit mass F(x, t) by setting Gi ¼ 3f �i ci � F; for example, gravity in z-direction
can be included by Gi ¼ �3f �i gci � ez.

The LBM algorithm can be summarised as follows:

1. Collision step: fþi ¼ fi � 1
s ðfi � f eq

i Þ þ Gi.
2. Propagation step: fiðxþ ci; t þ 1Þ ¼ fþi ðx; tÞ, for interior nodes.
3. Boundary conditions: fiðxþ ci; t þ 1Þ ¼ ~f iðxþ ci; tÞ, if x R X.

4. The level set method

The movement of the interface between different fluid phases is handled in our approach by the level set method. This
surface capturing method uses the continuous signed distance function defined on a Eulerian grid and represents the inter-
face by the zero level set of this function. The level set equation of Osher and Sethian is the basis for the approach. In this
chapter we present the numerical scheme used to solve this PDE quickly and accurately. Furthermore, we show how the
parameters describing the surface can be computed from the level set function.

4.1. The level set equation

Let Ct be the orientable free surface at time t. In the level set method, Ct is the zero iso-surface of the level set function u:
for x 2 Ct we have u(x, t) = 0, and u > 0 on one side of Ct (in the direction of the normal) and u < 0 on the other side. When
we choose a point x0 at time t0 we can follow its path x(t) and its velocity is v ¼ vðxðtÞÞ ¼ _xðtÞ. For the level set function we
can therefore deduce
ut þ v � ru ¼ 0: ð10Þ
This is the level set equation of Osher and Sethian [25] for the evolution of the free surface.
Since the gradient ru is perpendicular to an iso-surface, we know that the gradient is parallel to the normal n:

ru = krukn. If the level set function actually is the signed distance to the surface in direction of the normal, we have
uðxðtÞ þ sn; tÞ ¼ s for s 2 R, so ru � n ¼ us ¼ 1, and hence
n ¼ ru: ð11Þ
The normal therefore coincides with the gradient and, furthermore, since j ¼ r � n, also the mean curvature is easily de-
duced from the signed distance function,
j ¼ Du: ð12Þ
4.2. Numerical scheme

The computational domain is a rectangular box, as for LBM, where the sides are treated as periodic boundaries. The level
set equation of Osher and Sethian (10) is solved in the narrow-band by the Hamilton–Jacobi WENO scheme, which is fifth-
order accurate in space. Time integration uses a second-order accurate Runge–Kutta method [24].

In a computer implementation we can significantly reduce memory requirements and computation time by using the nar-
row-band technique. Since we are only interested in the movement of the iso-surface {u = 0}, it is sufficient to construct the
level set function only at points close to the surface. This technique does not store the distant points at all but merely retains
several bands of nodes around the current interface (usually 5–10 layers are stored).

The level set function is initialised by the signed distance to a given surface C0. Usually, we start with a triangulation and
construct the signed distance function from the triangulation. Of course, it is also possible to start the algorithm with other
given initial data u0.

The flow field v of the level set Eq. (10) is determined by the external flow field u. In principle, the movement of the iso-
surface can be modelled by using v = u. The drawback of this approach is that u(t) may gradually lose the signed distance
property of u0 for times t > 0. Therefore, to preserve the signed distance property during the simulation, the velocity field
v is constructed using the constant velocity extensions method of Adalsteinsson and Sethian [2], i.e.
vðtÞ ¼ uðtÞ on Ct ;

rvðtÞruðtÞ ¼ 0 in X:
For each grid node adjacent to the zero iso-surface, the nearest point on the surface is determined. Then, the velocity at
this projection point is computed from the discrete flow velocity field u, taken from the lattice Boltzmann method, in the
neighbourhood by extrapolation using a linear or quadratic polynomial ansatz. Note that u is continuous at the interface
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while this may not be true for its derivatives. We therefore extrapolate separately on both sides of Ct . For the velocity v at the
projection point we take the mean value of both extrapolations and store it in the grid node under consideration. Having
constructed the velocities adjacent to the surface, the rest of the velocity field in the narrow-band is eventually constructed
via the fast marching method [1].

After several time steps, the level set {u = 0} may have moved in such way that it approaches the boundary of the narrow-
band. Also, after some time steps, the function u may have lost the property of a signed distance function owing to numerical
errors. In these cases, it is necessary to adjust the narrow-band and to reinitialise u. In our code, reinitialisation is efficient due
to the fast marching method of Adalsteinsson and Sethian [1].

When modelling the flow of a bubble, the mass of the modelled bubble should be preserved. It is well-known that the
level set method, due to numerical errors, tends to shrink convex iso-surfaces, i.e. it leads to mass loss. To prevent this,
we preserve the volume of, e.g. X1 by correcting the signed distance function u with the correction term
cu ¼
Vexact � VðX1Þ

SðCÞ ; ð13Þ
where Vexact is the known volume of X1, and V(X1) and S(C) are the current volume of part X1 and the area of the interface,
respectively. In general, cu � h, and the error introduced by the correction is of the same order as the interpolation error (see
also [36]).

4.3. Calculation of surface properties

Generally, a higher order finite difference approach is used for computing the surface properties like normal and curva-
ture from the discrete level set function [31]. However, it has been found that estimating surface properties by the finite dif-
ference approach can be inaccurate and has a slow rate of convergence with respect to the underlying mesh width. Therefore,
we use an alternative method based on weighted least squares for estimating the desired surface properties as discussed in
[43]. In this approach, depending on the desired order of accuracy, the number of points around the node of interest (the
stencil in this context) and the degree of a local polynomial model are chosen in advance.

Let ð�x; �y;�zÞ be the node; wlog. we can choose the origin (0,0,0). For local coordinates (x,y,z), the mth order local polyno-
mial in R3 has l ¼ ðmþ 1Þðmþ 2Þðmþ 3Þ=6 coefficients,
f ðx; y; zÞ ¼
Xm

k¼0

X
pþqþr¼k;
p;q;rP0

1
ðpþ qþ rÞ! ĉðp;q;rÞxpyqzr : ð14Þ
Here, ĉ0 is the constant term, ĉ1; ĉ2; ĉ3 are the first derivatives, ĉ4 to ĉ9 are the second derivatives, and the remaining terms are
higher order derivatives of the polynomial. For sufficiently smooth functions u, approximate derivatives to any desired accu-
racy can be obtained by an appropriate choice of mesh width h and polynomial degree m.

When the polynomial f of degree m with l coefficients approximates u on Nr P l stencil points, the coefficients c are com-
puted by minimising
min
c
kAc � bk2

2; ð15Þ
where A 2 RNr	l is the three-dimensional Vandermonde matrix and b 2 Rl contains the values of u at the stencil points. The
system would be solved in the standard least squares sense by ĉ ¼ ðAT AÞ�1 Af. In the weighted least squares approach, ĉ is
given by ðAT W2AÞ�1AT W2b, where W is a diagonal matrix of size Nr . In our approach, we use weights based on u as in [32], i.e.
the diagonal entries are
Wii ¼
h2

h2 þ juij
: ð16Þ
Here, ui denotes the value of the level set function at the ith stencil point.
Once the coefficients ĉ are estimated, the next step is to determine where a lattice link intersects the level set. An approx-

imate intersection point Piðx�; y�; z�Þ can be found by checking whether there is a sign change of u in the link’s vertices and, if
so, solving f(x,y,z) = 0. Solving the equation amounts to finding the roots of a polynomial in R. For m P 5, a simple closed
solution does not exist. Hence, one forms the companion matrix of the polynomial and gets the unique intersection point
from the eigenvalues [43].

The normal at the intersection point, defined as n ¼ ru=kruk2, can be approximated using the local polynomial by set-
ting n :¼ rf=krfk2, where the gradient is evaluated at Pi, rf ¼ rf ðx�; y�; z�Þ.

For estimating the curvature, given by j ¼ r � n, we would need the Hessian of the level set function. Similar to the esti-
mation of the normal, the Hessian is approximated by the Hessian of the local polynomial Hf ðx�; y�; z�Þ. Let t and s be ortho-
normal vectors to n spanning the tangent plane. For determining the principal curvature we construct the Weingarten matrix
a [9] with
a ¼
a11 a12

a12 a22

� �
¼

t1 t2 t3

s1 s2 s3

� �
Hf

t1 s1

t2 s2

t3 s3

2
64

3
75:
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The eigenvalues of a are given by
j1;2 ¼
a22 þ a11

2



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða11 � a22Þ2

4
þ ða12Þ2

s
; ð17aÞ
and the mean curvature can then be estimated from
j ¼ 1
2

TraceðaÞ ¼ j1 þ j2

2
¼ a22 þ a11

2
: ð18Þ
Using this least squares approach, the estimated mean curvature is of order Oðhm�1Þ when the approximating polynomial is
of order m.

5. Coupling of LBM and level set method

At the interface, suitable LBM boundary conditions have to be prescribed which implement the jump conditions (2).
Moreover, nodes which are crossed by the moving interface change their fluid type such that a reinitialisation of the popu-
lation is required. Finally the level set algorithm has to be coupled with the lattice Boltzmann method. These three aspects
are discussed in the following subsections.

5.1. New boundary conditions at the interface

To ensure the continuity of velocity, [u] = 0, across the interface, we use a simple bounce back type Dirichlet condition on
each side of the interface. For example, for the point x2 in Fig. 1, we set
fiðx2; t þ 1Þ ¼ fþi� ðx2; tÞ þ 6hf �i ci � ~uþ Ri; ð19Þ
where the prescribed velocity ~u is a linear interpolation of the velocity along the direction ci, evaluated at the location
~x ¼ x1 þ qci ¼ x2 þ ðq� 1Þci on the interface,
~u ¼ quðx2; tÞ þ ð1� qÞuðx1; tÞ:
The additional term Ri is needed for two reasons: firstly, to ensure the jump conditions of the normal stress and, secondly, to
correct the error terms resulting from the bounce back treatment. We set
Ri ¼ 6h2f �i Ki : A; A ¼ �qð1� qÞ½S� � ðq� 1=2ÞSð2Þ þ OðhÞ: ð20Þ
For a practical implementation, the symmetric velocity gradient S(2) at x2 as well as its jump [S] at the interface point ~x have
to be computed up to first order accuracy from the lattice Boltzmann variables. For the computation of SðkÞ, we choose
SðkÞ ¼ � 3

2sh2

X
i

ci � ciðfi � f eq
i Þðt; xkÞ þ OðhÞ: ð21Þ
For the jump [S] we can extract information from the interface condition. First, because the velocity field is assumed to be
smooth in each phase and Lipschitz continuous across the interface, the tangential components of the velocity derivative do
not jump
½ðt1 � rÞu� ¼ 0; ½ðt2 � rÞu� ¼ 0:
Expressed in terms of [S], we find
½S� : t1 � t1 ¼ 0; ½S� : t1 � t2 ¼ 0; ½S� : t2 � t1 ¼ 0; ½S� : t2 � t2 ¼ 0: ð22Þ
We remark that (22) expresses four components of the matrix representation of [S] with respect to the local basis (t1, t2,n). In
fact, any matrix B can be expressed with respect to some orthonormal basis (b1,b2,b3) in the form
B ¼
X3

k;l¼1

ðB : bk � blÞbk � bl
which follows easily by applying the right hand side to a general vector x and using Einstein’s summation convention
ðB : bk � blÞbk � blx ¼ ðB : bk � blÞbkðx � blÞ ¼ ðB : bl � xÞbk ¼ traceðBxbT
kÞbk ¼ ððBxÞ � bkÞbk ¼ Bx:
Moreover, we have for any B and general vectors a, b
B : a� b ¼ traceðBabTÞ ¼ ðBaÞ � b ¼ a � ðBT bÞ ¼ BT : b� a:
Noting that ½S� ¼ ½S�T , we obtain with (22)



G. Thömmes et al. / Journal of Computational Physics 228 (2009) 1139–1156 1147
½S� ¼ ð½S� : n� nÞn� nþ
X2

k¼1

ð½S� : n� tkÞðn� tk þ tk � nÞ
so that the required product with Ki is
Ki : ½S� ¼ ð½S� : n� nÞððn � ciÞ2 � jcij2=3Þ þ
X2

k¼1

2ð½S� : n� tkÞðn � ciÞðtk � ciÞ: ð23Þ
The remaining three components of [S] with respect to the basis (t1, t2,n) are related to the stress conditions at the interface.
Using ½T� ¼ �½p�I þ 2½lS�, we first note that
½lS� : n� n ¼ ½p� þ 2jr; ½lS� : n� tk ¼ 0; k ¼ 1;2:
Then, using the relation ½lS� ¼ ½l�Sþ �l½S� with averages S ¼ 1
2 ðS

ð1Þ þ Sð2ÞÞ and �l ¼ 1
2 ðlð1Þ þ lð2ÞÞ, we find
½S� : n� n ¼ 1
2�l
ð½p� þ 2rjÞ � ½l�

�l
S : n� n;

½S� : n� tk ¼ �
½l�
�l

S : n� tk:

ð24Þ
Algorithm for LBM interface boundary conditions:
The product Ki : ½S� is computed with (23) and (24) using the curvature information, the approximated pressure jump
½p� � 1

3h2 ðqðx1; tÞ.ð1Þ � qðx2; tÞ.ð2ÞÞ
and the averaged symmetric velocity gradient S ¼ ðSð1Þ þ Sð2ÞÞ=2 with SðiÞ obtained approximately according to (21). Again
Using (21), also the required product Ki : Sð2Þ is approximated. Combined with the pre-factors involving the scaled interface
distance q, the quantity Ri in (20) is completely determined in terms of the lattice Boltzmann variables and can be used in
(19) in connection with the interpolated velocity ~u.

The consistency of this interface condition can be checked using the asymptotic expansion approach presented in [19].
The basic idea is to insert the truncated expansion (8) into the interface condition and Taylor expand the expression around
the interface point ~x. In these expansions, one has to work with the appropriate left and right derivatives because, in general,
derivatives jump across the interface. The expansion of fi and ~u in (19) at ~x yields
6ð1� qÞhf �i cið½uNS� þ h½vOT �Þ � 6h2f �i Ki : ðqð1� qÞ½SNS� þ ðq� 1=2ÞSð2ÞNS Þ ¼ Ri þ Oðh3Þ

Since Ri contains no first order contributions in h, we conclude that ci � ½uNS� ¼ 0 for all directions ci crossing the interface so
that [u] = 0. Similarly, the jump condition for the field vOT , which satisfies a homogeneous linearised Navier–Stokes equation,
turns out to be ½vOT � ¼ 0 because Ri contains only quadratic expressions in ci. Next, the term involving Sð2ÞNS cancels with the
associated approximation contained in Ri. The remaining equality between Ki : ½SNS� and the corresponding term in Ri implies
the stress conditions.

Remark 1. The derivation of the new interface conditions is not restricted to the choice of the D3Q15 model in our
implementation. For simulations in three dimensions, other lattice Boltzmann models, e.g. D3Q19 or D3Q27, could
alternatively be used. This affects the number of links intersecting the interface and, hence, the amount of data computed at
the interface. For these models the runtime would, in general, slightly increase.
5.2. Refill methods

Since we are dealing with a free-surface problem, fluid nodes can change their type (from fluid 1 to fluid 2, and vice versa)
when the interface Ct moves. Then the populations have to be reinitialised or refilled. Different procedures for accomplishing
this refill have been proposed and analysed in [5,6]. We choose the equilibrium/non-equilibrium refill, which produced the
best results in these tests. The refill procedure consists of four steps:

1. Interpolate density and velocity from interior neighbours.
2. Compute the corresponding equilibrium.
3. Copy the non-equilibrium part from a direct interior neighbour.
4. Reinitialise by adding equilibrium and non-equilibrium parts.

Suppose we choose an inward pointing direction ci in a boundary point x ¼ xb 2 X1, e.g. the direction of smallest angle
with the surface normal. Then the density is interpolated using the three nearest neighbours in the interior of subdomain X1:
~q ¼ 3qðx� ci; t þ 1Þ � 3qðx� 2ci; t þ 1Þ þ qðx� 3ci; t þ 1Þ:
Interpolation of the velocity uses two neighbours and the velocity uC at the interface point xC, which is taken from the level
set method:



m

LBM

q, n, v, ... 

surface motion

u, F, ...

Fig. 2. Data exchange between LBM and the level set method at time step n. LBM passes the current flow field u, while the level set method computes the
description for new surface points (e.g. distance q, normal n, velocity v).
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~u ¼ 2
q2 þ 3qþ 2

uC þ
2q

qþ 1
uðx� ci; t þ 1Þ þ 2q

qþ 2
uðx� 2ci; t þ 1Þ:
Here, q ¼ kxC � x1k=kcik is the distance to the interface normalised by the link length. The new equilibrium f eq
i ð~q; ~uÞ is then

added to the non-equilibrium part copied from the direct neighbour, f neq
i ðx� ci; t þ 1Þ. Of course, the same procedure is also

applied in the second subdomain X2.

5.3. Coupling of the two methods

A simulation is started by creating the initial interface C0 from a triangulation in stereo lithographic format (STL). The
level set code then creates the surface description for LBM: the links intersecting the interface, the normalised distance q
along the links, the normal, the tangential vectors t1, t2, and the principal curvatures j1, j2. Moreover, the velocity of the
intersection point is passed. With this data the LBM computes the flow field and applies the new boundary condition to cou-
ple the two fluid phases. As illustrated in Fig. 2, after a prescribed number of time steps, LBM passes the current velocity field
to the level set code. The level set function is conveyed according to this field over the same time interval and passes the new
geometry information to LBM. This completes a step of the combined algorithm and the simulation proceeds by alternating
LBM and the level set method until termination.

6. Numerical results and examples

In this section we test the lattice Boltzmann method coupled with the level set method in a few different situations. First,
channel flows of two immiscible fluid layers with known analytical solution are simulated. Then we verify the correct imple-
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mentation of surface tension in the Young–Laplace bubble experiment. Finally, in a Hele-Shaw cell, interface motion in vis-
cous fingering experiments is investigated.

6.1. Couette and Poiseuille channel flows

We simulated channel flows with two fluid layers in a channel along the x-axis. In this case the analytical solution only
depends on the ratio of dynamic viscosities. Furthermore, the presence of surface tension should have a stabilising effect on
the interface, which in this setup is subject to viscous stresses, and preserve its flat shape.

First we simulated a Couette flow with fixed lower wall at y = �1 and upper wall at y = 1 moving with constant velocity
v0 = 0.16 in x-direction. At the walls no-slip boundary conditions were implemented using the bounce back method, and
periodic boundary conditions were applied at the inflow and outflow. The densities of the fluids were q1 = q2 = 1 and the
surface tension coefficient was r = 0.016. Starting with fluids at rest, after an initial phase the flow should approach a sta-
tionary solution. By imposing continuity of the velocity [v] = 0 and the shear stress ½l@xv � ¼ 0, a linear velocity profile was
derived from the Navier–Stokes equations
vðxÞ ¼
v0

l1
l1þl2

xþ l2
l1þl2

� �
; x P 0;

v0
l2

l1þl2
xþ l2

l1þl2

� �
; x < 0;

8><
>:
where l1 denotes the dynamic viscosity in the lower fluid and l2 the viscosity in upper fluid. We simulated the flow in a
quadratic domain [�1,1]2 in the xy-plane with N nodes in x- and y-direction. In the 3D code we used 8 nodes in z-direction
and imposed periodic boundary conditions along this axis. Fig. 3 shows excellent agreement with the analytical solution of
the resulting velocity profile on a grid with N = 32 nodes across the channel after T = 1000 time steps. This is also confirmed
by the convergence analysis in Fig. 4. In the figure the relative velocity error in the maximum norm
e1 ¼
maxijv i � vðxiÞj

maxijvðxiÞj
is plotted versus the grid spacing h ¼ 2
N for N = 16, 32, 64, 128. As expected, our numerical experiments also showed that re-

sults were independent of r. Moreover, flows with different density values, in particular ratios up to 1:1000, could be sim-
ulated and produced the same results when the kinematic viscosities in the LBM were adjusted accordingly to simulate given
dynamic viscosities.

As a second example we considered two-phase Poiseuille flows. Here, both walls (y = 1 and y = �1) were at rest and the
flow was driven by a pressure difference Dp0. At the walls we used bounce back no-slip boundary conditions and pressure
boundary conditions were applied at the inflow and outflow. The densities and the surface tension coefficient were the same
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as before. The stationary solution of the Navier–Stokes equations consists of two quadratic velocity profiles matched contin-
uously at the interface
vðxÞ ¼
Dp0
2l2

x2 � l1�l2
l1þl2

x� 2l2
l1þl2

� �
; x P 0;

Dp0
2l1

x2 � l1�l2
l1þl2

x� 2l1
l1þl2

� �
; x < 0:

8><
>:
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Fig. 6. Grid convergence for three Poiseuille channel flows with different viscosity ratios.
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A comparison of the numerical and analytical velocity along the x-direction for a grid with N = 64 nodes across the channel
after T = 1000 time steps is displayed in Fig. 5.

An error analysis (Fig. 6) reveals, apart from convergence, an increase of the absolute error when the viscosity ratio be-
comes large. Since a similar effect is observed in single phase simulations for growing viscosities, this effect should mainly be
attributed to the viscosity dependence of the chosen wall boundary conditions.

6.2. Young–Laplace experiment for a bubble

To validate the implementation of surface tension in the new method we used the Young–Laplace experiment for the
pressure difference inside a bubble as a benchmark problem. The pressure p inside a spherical bubble of radius r surrounded
by a second fluid is proportional to the surface tension coefficient r according to the Young–Laplace law
p ¼ 2r
r
¼ 2rj; mean curvature j ¼ 1

2
ðj1 þ j2Þ: ð25Þ
We consider a unit cube [0,1]3 containing a bubble of radius r = 0.25 at the centre. For the simulations we used an equi-
distant grid of N nodes in each coordinate direction and periodic boundary conditions at the sides of the cube. The viscosities
were chosen equal, mi ¼ 1=6, and the densities were q1 = 1 and q2 = 1000. Simulations were started with zero pressure dif-
ference and stopped when the initial fluctuations were reduced sufficiently.

Fig. 7 shows a time series of initial pressure oscillations, which are in general quickly damped until the final value is at-
tained when the viscosities are not exceedingly high. For our choice of viscosity it could be assumed that oscillations had
sufficiently subsided when simulations were stopped at t = 500 on a grid with N = 16 (correspondingly, according to the dif-
fusive scaling, t = 2000 for N = 32, and t = 8000 for N = 64). Grid convergence of the pressure error is shown in Fig. 8. We note
that the order of convergence is influenced by the order of the curvature reconstruction. This is expected since the Young–
Laplace pressure is sensitive to curvature errors produced by the level set method. For the orders 3 and 4 in curvature recon-
struction we observe approximately second-order convergence of the pressure.

A numerical artifact observed with many numerical methods is the appearance of spurious currents at the interface. This
is true in our case as well. Fig. 9 shows an example for N = 32. However, the spurious currents decrease when the grid is
refined and convergence in the maximum norm can be established. In particular, for curvature reconstruction of order 3
and 4, first order convergence is achieved.

In [36] it has been verified that the capillary number Ca ¼ mq1U=r corresponding to the velocity U of the spurious cur-
rents is constant with respect to the non-dimensional Laplace number La = rrq/l2. This could also be confirmed in our sim-
ulations. We varied the surface tension r and recorded the maximum norm of the spurious velocities on a grid with N = 16.
The results using curvature reconstructions of order 2, 3, and 4, respectively, are summarised in Table 1. For higher curvature
orders the spurious velocities and hence the capillary number become smaller, but within each of the three sets of simula-
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Table 1
Independence of Ca from r (and therefore from La). Results for three different orders of curvature reconstruction.

r Order 2 Order 3 Order 4

U Ca U Ca U Ca

10�3 8.1949(�8) 1.3658(�5) 4.3563(�8) 7.2605(�6) 1.8941(�8) 3.1568(�6)
10�4 8.1971(�9) 1.3662(�5) 4.3557(�9) 7.2595(�6) 1.8947(�9) 3.1578(�6)
10�5 8.1974(�10) 1.3662(�5) 4.3557(�10) 7.2595(�6) 1.8947(�10) 3.1578(�6)
10�6 8.1974(�11) 1.3662(�5) 4.3557(�11) 7.2595(�6) 1.8947(�11) 3.1578(�6)
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tions Ca has approximately the same value. We note that simulations with high density ratios or kinematic viscosity ratios
can be successfully performed. However, accuracy deteriorates and spurious currents increase when the ratio attains exces-
sively large values. Moreover, our numerical experiments indicate that the results depend also on internal parameters of the
implementation, e.g. the grid refinement of the level set grid with respect to the LBM grid or the order of curvature recon-
struction for the calculation of curvature in the level set method. Based on this experience we feel that using third order cur-
vature and a level set grid that coincides with the LBM grid produces the best results. The accuracy of the triangulation used
to initialise the level set function turned out not to be of significant importance for the result at the final time.

6.3. Viscous fingering

When a fluid of low viscosity pushes a second fluid of high viscosity owing to a pressure gradient or to gravity, the inter-
face is prone to instabilities which lead to the penetration of the first fluid into the domain of the second in the form of a
finger or tongue. A prime example is the use of water to drive oil out of porous rocks (see [41]). An experimental model setup
for the study of the so-called viscous fingering is the Hele-Shaw cell where the flow domain consists of a narrow gap between
two parallel plates. It was first described by Hele-Shaw [11] and the analysis of the fingering instability started with the sem-
inal paper of Saffman and Taylor [28]. Since the governing equations for the gap-averaged velocity are similar to Darcy’s law,
the Hele-Shaw cell also serves as a 2D model for flow through porous media, where the flow is governed by Darcy’s law. The
investigation of interface formation in immiscible flows with and without surface tension effects has revealed that this can
be used as a generic model problem for analytical studies as well as for benchmarking numerical simulations of free surfaces
[7,12,44,23,27].

In our simulations we considered the flow in the narrow gap between the plates and investigated the finger by assuming
that the tip can be fitted by an exponential shape as described in [27]. We used a channel [0,32] 	 [�1,1] with aspect ratio
16:1 using 16N grid points in x-direction, and N in y-direction. At the inlet (outlet), a pressure pin ¼ 0:032 ðpout ¼ �0:032Þ
was applied in x-direction to simulate a pressure gradient. At the walls ðy ¼ 
1Þwe imposed the usual no-slip boundary con-
ditions. In z-direction periodic boundary conditions were applied. An initial interface perturbation in the form of a sine
shape, yðxÞ ¼ 1þ 0:5 cosðpxÞ, was prescribed at the beginning. We assumed a driving fluid of viscosity m1 = 0.1 and a second
fluid of higher viscosity m2 = 1. The densities of the fluids were the same, q1 = q2 = 1, and a surface tension coefficient
r = 0.016 was chosen.

Fig. 10 shows the contour of the resulting viscous finger at several time steps. The velocity of the finger tip was U = 0.032
and the corresponding capillary number was Ca = q2m2 U/r = 2. An exponential function is plotted for comparison using an
ansatz in the form
yðxÞ ¼ 
ðekðx�x0ÞÞ � bÞ;
with parameters b = 0.67, taken from Fig. 7 in [27], and q = 0.7165 obtained from the relation
2q� sin 2qþ Cað4q2 � 4 cos2 qÞ ¼ 0;
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such that k ¼ q=ð1� bÞ ¼ 2:1712. For x0 we take the position of the finger tip. In the plots of the finger tips, good agreement
with the expected exponential shape is observed. In this simulation the interface experiences strong deformation and
stretching. We compared the volume of the two fluid phases over the course of the fingering experiment with the volume
influx at the inlet. It revealed that there was excellent agreement of the recorded volume with the predicted volume from the
influx with a deviation of less than 1%.

Remark 2. In all the simulations presented here no mass conservation problems were encountered. However, we report that
mass loss was observed when studying rising bubbles. In this situation mass correction as described above was necessary.
These results will be presented in a subsequent publication.

In the simulation it was furthermore observed that the points on left which touched the walls moved slightly to the right.
This numerical artifact was produced by the fact that the wall did not lie on the cell centres but on cell edges. Owing to the
domain periodicity in the level set method, the velocity extrapolation did not produce zero velocity of the level set function
at the wall. The artifact was corrected in a post-processing step by shifting the finger shape to the left. We note, moreover,
that the finger width coincides better with the theoretical value at points further away from the tip. This reflects the fact that
the asymptotic analysis leading to the exponential shape assumes an infinitely long finger [27].

To check the correctness of the shape obtained on this rather coarse grid, we computed the results on two finer grids with
N = 32 and N = 64, respectively, and confirmed the grid convergence of the finger shape (Fig. 11).

7. Summary and conclusions

We have developed a lattice Boltzmann method for immiscible two-phase flows which modifies the populations at the
interface such that the interface conditions for the macroscopic quantities e.g. velocity u, pressure p and stress S, and surface
tension effects are naturally incorporated in the LBM framework. Coupled with the level set method, which handles interface
evolution, the new algorithm allows for the computation of flows with complex geometrical features and large viscosity and
density differences. Numerical results for typical two-phase flow problems demonstrate the validity of this approach and
verify its stability and accuracy.

In contrast to conventional approaches for immiscible multiphase flows and surface tension in the LBM framework, e.g.
the colour gradient method of Gunstensen et al. [14,15], or the approach of Shan and Chen [33,34], in the new method, phase
boundaries are represented by sharp interfaces separating the different fluid phases. In this way the typical interface smear-
ing effect of these methods is completely avoided. Interfaces are described by the level set function and moved according to
the flow in the lattice Boltzmann model using the level set method. In this way several drawbacks of previous methods are
overcome. In particular, the colour gradient method is only applicable when density differences are small and it exhibits
grid-dependent perturbations of the interface which cannot be removed in the LBM framework [21]. The method of Shan
and Chen suffers, among other things, from mass losses. This is also true for the level set method, but various strategies have
been presented in the literature which successfully remedy this numerical problem. As an alternative to the mass correction
presented here a particle level set method could be used. This will be investigated in future work.
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Additionally, the new approach has the computational advantage of smaller memory requirements since only one set of
populations is needed in LBM, while in the colour gradient method each phase has its own populations. In the approach of
Shan and Chen the potential field has to be stored on the whole 3D grid, whereas we use the memory efficient narrow-band
technique, which effectively stores and computes the level set function only in a small layer around the interface, for the
level set method [1].

In comparison with the hybrid LBM in [22], we mention, in particular, that our new approach is also able to simulate flow
in complex geometries with high density and viscosity differences. Moreover, the level set method is well suited for topology
changes while this is not easily accomplished using particle methods like front-tracking.

Comparing our method with the free energy method [37,38] we remark, that it is not based on a physical principle of such
general applicability as the free energy method. Rather, the starting point of our approach was numerical analysis. We de-
rived a discretisation based explicitly on the governing macroscopic jump conditions for the mesoscopic particle distribu-
tions. Hence the conservation laws are fulfilled by construction up to errors due to the discretisation on the finite grid,
which is sufficient for a numerical scheme.

Future work in the realm of free-surface multiphase flows will focus on applications of the method to the simulation of
Rayleigh–Taylor instability and bubble dynamics including break-up and coalescence of bubbles.
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